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Linear Paul ion trap platform 



~2 µm 

 From: R. Blatt, Univ. Innsbruck 

Cold ions in linear Paul trap 
(Monroe group, UMD and JQI) 

Yb171+ 



Equilibrium positions and phonons 



Equilibrium positions Paul trap 

James, Appl. Phys. B (1998). 
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Spin-phonon coupling by spin-
dependent optical dipole force 
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Generating the effective spin-spin 
Hamiltonian by adiabatically 

eliminating the phonons 



Spin-dependent force Hamiltonian 
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Integrate out the phonons by “completing the square” 



Effective Spin Hamiltonian 
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Note: spin-spin couplings are functions of t which 
can be thought of as generating a static 
Hamiltonian, plus additional time-dependent 
phases that enter the evolution operator. 



Paul trap simulations 



Route to observing frustration: Adiabatic protocol 
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Step 1: Polarize all spins into x-y plane x 
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Step 2: Ramp from high to low field 
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Step 3: Measure all spins along x 
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initialize 
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detect 

R. Islam, CS, W. C. Campbell, S. Korenblit, J. Smith, A. Lee, E. E. Edwards,  
C.-C. J. Wang, J. K. Freericks, and C. Monroe, Science 340, 583 (2013) 
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Ramping the Hamiltonian non-adiabatically probes frustration 

Energy gaps between ground and excited states are smaller 
 for long-range interactions which lead to more frustration 
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Route to observing frustration: Energy gaps 

R. Islam, CS, W. C. Campbell, S. Korenblit, J. Smith, A. Lee, E. E. Edwards,  
C.-C. J. Wang, J. K. Freericks, and C. Monroe, Science 340, 583 (2013) 



Frustration of Magnetic Order 
Structure function 
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Peak indicates  
ground state ordering 

R. Islam, CS, W. C. Campbell, S. Korenblit, J. Smith, A. Lee, E. E. Edwards,  
C.-C. J. Wang, J. K. Freericks,and C. Monroe, Science 340, 583 (2013) 



Frustration of Magnetic Order 

Short range 

Long range 

Structure function 

B/J=0.01 

R. Islam, CS, W. C. Campbell, S. Korenblit, J. Smith, A. Lee, E. E. Edwards,  
C.-C. J. Wang, J. K. Freericks, and C. Monroe, Science 340, 583 (2013) 
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Spectroscopy of excitations 



Once diabatic excitations have 
occurred, then they cause oscillations 
in observables at frequencies given by 

the excitation energies of the states 
that were excited, relative to the 

ground state 



Spectroscopy protocol  
● Evolve diabatically, 

creating excitations  
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constant value after the 
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made 

 



Spectroscopy protocol  
● Evolve diabatically, 

creating excitations  
● Fix magnetic field at a 

constant value after the 
excitations have been 
made 

● Measure a low-noise 
observable (like the 
probability to be in a 
specific product state.) 



Spectroscopy protocol  
● Evolve diabatically, 
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● Fix magnetic field at a 

constant value after the 
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made 
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observable 

● Signal process the 
oscillations as a function 
of time to determine the 
energy difference 

 



Spectroscopy protocol  
● Evolve diabatically, 

creating excitations  
● Fix magnetic field at a 

constant value after the 
excitations have been 
made 

● Measure a low-noise 
observable 

● Signal process the 
oscillations as a function 
of time to determine the 
energy difference 

● Repeat to map spectra 
for different B fields 

 



Test Case: Infinite-range  
transverse field Ising model 

• Total spin S2 is a good 
quantum number, so 
Hilbert space shrinks 
from 2N down to N+1 
for a ferromagnetic 
system 

• Eigenstates have a spin-
reflection parity 
(even/odd against spin 
flips of all spins) 

• We work with N=400 



Extracting energy differences from 
time traces 



Energy spectra 

Regular Fourier transform             Compressive sensing 



Alternative spectroscopy method via 
modulation spectroscopy in the 

Monroe lab 



Many-body Rabi spectroscopy 
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C. Senko, J. Smith, P. Richerme,  
A. Lee, and C. Monroe, in preparation 



Many-body Rabi spectroscopy 
)()(, ˆˆ j

x
i

x
ji

ji
xJH σσ∑

≠

=

Theory spectrum for 8 ions,  
0,6.0 0 <≈ Jα

E.g., at low field,  
Bprobe drives transitions if: 

• States differ by exactly one 
spin flip along x 
 

• Probe freq. matches energy 
splitting, ba EEf −≈
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C. Senko, J. Smith, P. Richerme,  
A. Lee, and C. Monroe, in preparation 



Many-body Rabi spectroscopy 
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Protocol: 

• Prepare eigenstate 
• Often,   

x
↓↓↓↓

• Apply probe field for fixed 
time (3 ms) 

• Scan probe frequency and 
observe transitions 

C. Senko, J. Smith, P. Richerme,  
A. Lee, and C. Monroe, in preparation 



Measuring a critical gap 
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B0 = 1.4 kHz 

Rescaled population 

B0 = 0.4 kHz 

C. Senko, J. Smith, P. Richerme,  
A. Lee, and C. Monroe, in preparation 



Shortcuts to adiabaticity 



Local adiabatic ramp 

P. Richerme, C. Senko, J. Smith, A. Lee, S. Korenblit, and C. 
Monroe, Phys. Rev. A 88, 012334 (2013). 

For a local 
adiabatic ramp, 
we keep the 
diabaticity 
parameter γ 
constant to 
determine the 
time-dependent 
field 
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Adding counter diabatic terms 

Del Campo et al. showed how to determine the 
operators for a nearest neighbor Ising model, but we 
are investigating long-range Ising models, so we 
construct the counter diabatic terms for small 
numbers of ions. 
 
First, one should note symmetries of the 
Hamiltonian. There is a spatial reflection symmetry 
about the center, and there is a spin-reflection 
symmetry where x->-x, y->y, and z->-z. States can 
be classified as even or odd with respect to each 
parity operator.  
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Experimental implementation 

Working with an optimized 
B(t) is the easiest thing to 
do experimentally. 
 
Otherwise, one needs to 
find approximate 
operators for counter 
diabatic terms that are 
experimentally viable. 

Using weak fast passage is likely to get to a higher final state 
probability. 
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