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OUTLINE

❖ Berry’s transitionless quantum driving!

❖ the rotating frame for unitary evolutions!

❖ adiabatic theorem for open quantum systems!

❖ transitionless quantum driving in open quantum 
systems!

❖ examples



Berry’s transitionless quantum driving

Ĥ(t) = Ĥ0(t) + Ĥ1(t)

Ĥ0(t)|'n(t)i = En(t)|'n(t)i
if the initial state of the system is an instantaneous eigenstate 
of a time dependent Hamiltonian Ho it will remain the the 
corresponding eigenstate at time t as long as Ho varies slowly 
enough and there are no level crossing

transitionless quantum driving: add a new time 
dependent hamiltonian term H1 so that the state 
becomes an exact solution regardless of the speed of 
change of the hamiltonian

Ĥ(t)|'n(t)i = i@t|'n(t)i



a classical analog 

adiabatic

fast

a spin following a magnetic field !
whose direction changes in time



the rotating frame
Ĥ(t) =

X

i,j

|iihi|Ĥ(t)|jihj|

Û(t) =
X

i

|'i(t)ihi|

Û�1(t)Ĥ(t)Û(t) ⌘ Ĥd(t) =
X

i

Ei(t)|iihi|

U(t) diagonalizes the hamiltonian



the time dependent Schoedinger eq.

Ĥd(t) + i@tÛ
�1(t)Û(t)]| id = i@t| id

| id = Û�1| i.

Ĥ 0
d(t) = i

X
|iihi|@tÛ�1(t)Û(t)|iihi| = i

X
h'̇i|'ii|iihi|,

Ĥ 0
nd(t) = i

X

i 6=j

|iihi|@tÛ�1(t)Û(t)|jihj| = i
X

i 6=j

h'̇i|'ji|iihj|,

[Ĥd(t) + Ĥ 0
d(t) + Ĥ 0

nd(t)]| id = i@t| id.

time dependent unitary transformation



transitionless quantum driving

Ĥ 0
d(t) = i

X
|iihi|@tÛ�1(t)Û(t)|iihi| = i

X
h'̇i|'ii|iihi|,

Ĥ 0
nd(t) = i

X

i 6=j

|iihi|@tÛ�1(t)Û(t)|jihj| = i
X

i 6=j

h'̇i|'ji|iihj|,

Ĥtqd(t) = �Û(t)Ĥ 0
nd(t)Û

�1(t).

Berry connection

non adiabatic term

transitional quantum driving



adiabatic approximation in open quantum systems

L[%] = �i[Ĥ(t), %] +
1

2

NX

j=1

(2�̂j(t)%�̂
†
j(t)� {%, �̂†

j(t)�̂j(t)})

due to the coupling of the system with the environment, the energy-difference between 
neighbouring eigenvalues of the Hamiltonian no longer provides the natural time-scale !
with respect to which a time-dependent Hamiltonian could be considered to be slowly-
varying.!
!
adiabaticity of open systems is reached when the evolution of the state of a system occurs 
without mixing the various Jordan blocks into which L can be decomposed.!

Sarandy Lidar PRA 71, 012331 (2005)



a matrix reppresentation of L
define a time independent basis in the D2-dimensional space of the 
density matrices.This could consist, for example, the three Pauli 
matrices and the identity matrix in the case of a single spin-1/2.

B ⌘ {�̂i} i = {1, . . . , D2}.

|%ii = (⇢1, ⇢2, . . . , ⇢D2)†,

L(t)|%ii = |%̇ii.

Ljk(t) = Tr[�̂†
j (Lt[�̂k])].⇢j = Tr[�̂†

j%]

the density operator becomes a vector

the Lindblad operator becomes a super matrix



Jordan decomposition
Although  the supermatrix L(t) might be  non-Hermitian, in which case it 
cannot be diagonalized in general, it is  always possible to find a similarity 
transformation C(t) such that  L(t) is written in the canonical Jordan form 

LJ(t) = C�1(t)L(t)C(t) = diag[J1(t), . . . , JN (t)],

C(t) =
NX

⌫=1

M⌫X

µ⌫=1

|D⌫,µ⌫ (t)iihh�⌫,µ⌫ |,

L(t)|D⌫,µ⌫ (t)ii = |D⌫,µ⌫�1(t)ii+ �⌫(t)|D⌫,µ⌫ (t)ii,

|D⌫,0(t)ii represents  the eigenvector of L(t) !
corresponding to the the eigenvalue 

�⌫(t)



transitionless open dynamics
(LJ + L0

J + L0
nd)|%iiJ = |%̇iiJ,

L0
J =

X
|�⌫,µ⌫ iihh�⌫,µ⌫ |Ċ�1C|�⌫,µ⌫ iihh�⌫,µ⌫ |

L0
nd =

X

⌫ 6=⌫0

|�⌫,µ⌫ iihh�⌫,µ⌫ |Ċ�1C|�⌫0,µ0
⌫0 iihh�⌫0,µ0

⌫0 |

Ltqd = �CL0
ndC

�1.transitionless quantum driving

formal analogy with the unitary case

the driving term can be unitary (hamiltonian) !
or non unitary (a quantum channel) 

for one dimensional Jordan blocks !
the off diagonal !
matrix term of the correction term are λ λ

˙ =
˙
−+ +

+ +
( ) ( )

( ) ( ) ( )
t t

t L t t
. (16)i j

i j

j i

The general case of non-trivial Jordan block can be treated analogously, although the correction
term would assume a more complicated (although conceptually equivalent) expression (cf [31]
for more details about the adiabatic approximation in open systems).

We now address the question of whether is possible to provide a necessary condition for
the Hermitian nature of the correction term in equation (15) is always Hermitian. Let us now
consider a Lindblad superoperator on the form

∑ρ
γ

Γ ρΓ Γ Γ ρ= ˆ ˆ − ˆ ˆ† †⎡⎣⎢ ⎤⎦⎥3 { }[ ] ( ) ( ) ( ) ( )t t t t
2

2 , , (17)
k

k
k k k k

where we assumed Γ Γˆ = ˆ ˆ ˆ†( ) ( ) ( )t U t U tk

k

0 for a given global unitary operator ˆ ( )U t and time-

independent jump operators Γ̂ .
k

0 By moving to a rotating frame defined by ˆ ( )U t and calling

ρ ρ˜ = ˆ ˆ †( ) ( ) ( )U t t U t the density matrix in such a frame, we get the Lindblad equation

∑ρ γ Γ ρΓ Γ Γ ρ˜̇ = ˆ ˜ ˆ − ˆ ˆ ˜ − ˆ̇ ˆ ϱ̃†⎡⎣⎢ ⎤⎦⎥ ⎡⎣ ⎤⎦{ } ( ) ( )i iU t U t
2

2 , , . (18)
k

k k k k

0 0 0 0

That is, in the rotating frame generated by ˆ ( )U t , the time dependence of the Lindblad operator
is cancelled, and different eigenvectors will evolve independently. This simple argument shows
that, whenever the non-unitary part of the evolution of a system is governed by jump operators
such as Γ ( )tk , the superadiabatic correction is provided by the Hamiltonian term

ˆ = ˆ̇ ˆ †( ) ( ) ( )H t iU t U t .tqd A more formal proof is given in the appendix.

3. Examples

In order to illustrate the general formalism described above, let us now discuss some simple
examples involving a single-spin system. The first addresses the case of a single spin affected
by a dissipative mechanism described by the super operator

γ σ σ σ σϱ = ˆ ϱ ˆ − ˆ ˆ ϱ− + + −⎡⎣ ⎤⎦3 [ ] { }
2

2 , (19)n n n nad

σ σˆ = ˆ = ↓ ↑− + †( )n n n the lowering ladder operator along the direction n, and ↓ ↑{ }, the two
spin states of the system. The dissipation occurs along a direction in the single-spin Bloch
sphere identified by the unit vector θ ϕ θ ϕ θ= ( )n sin cos , sin sin , cos with θ and ϕ the
azimuthal and equatorial angle, respectively. In order to write explicitly both the Liouvillian
supermatrix θ ϕ( )L , and the corresponding coherence vector, we choose the ordered basis

σ σ σˆ ≡ ˆ ˆ ˆ ˆ0( )B , , ,x y z . Let us now consider the case in which the direction of the dissipation n

precesses around the z-axis of the Bloch sphere at a constant angular velocity ω, maintaining a
fixed azimuthal angle θ0, and a constant damping rate γ. By setting ϕ ω= t and employing the
result in equation (15), we can find the explicit form of the 4 × 4 supermatrix θ ω( )L t,tqd

required to achieve superadiabaticity in this example. An explicit calculation shows that a
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rotating jump operators and unitary driving

λ λ
˙ =

˙
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+ +
( ) ( )

( ) ( ) ( )
t t

t L t t
. (16)i j

i j

j i
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k
k k k k

where we assumed Γ Γˆ = ˆ ˆ ˆ†( ) ( ) ( )t U t U tk

k

0 for a given global unitary operator ˆ ( )U t and time-

independent jump operators Γ̂ .
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k k k k
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3. Examples

In order to illustrate the general formalism described above, let us now discuss some simple
examples involving a single-spin system. The first addresses the case of a single spin affected
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2

2 , (19)n n n nad

σ σˆ = ˆ = ↓ ↑− + †( )n n n the lowering ladder operator along the direction n, and ↓ ↑{ }, the two
spin states of the system. The dissipation occurs along a direction in the single-spin Bloch
sphere identified by the unit vector θ ϕ θ ϕ θ= ( )n sin cos , sin sin , cos with θ and ϕ the
azimuthal and equatorial angle, respectively. In order to write explicitly both the Liouvillian
supermatrix θ ϕ( )L , and the corresponding coherence vector, we choose the ordered basis
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precesses around the z-axis of the Bloch sphere at a constant angular velocity ω, maintaining a
fixed azimuthal angle θ0, and a constant damping rate γ. By setting ϕ ω= t and employing the
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is cancelled, and different eigenvectors will evolve independently. This simple argument shows
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basis B introduced above with the index i now defined as
i =

P
⌫�1
k=0 Mk

+ µ
⌫

(M0 = 0).
The inverse transformation C�1

(t) (such that
C�1

(t)C(t) = C(t)C�1
(t) = I) can be defined in a

conceptually analogous way by considering the set of
left instantaneous quasi-eigenvectors of L(t). As the set
{|D

⌫,µ⌫ (t)ii} embodies the basis where L(t) is in Jordan
form, we immediately get that L

J

(t) = C�1
(t)L(t)C(t).

Needless to say, when L(t) is diagonalizable the same
arguments and definitions above apply with M

⌫

becoming
the multiplicity of the eigenvalue �

⌫

and right (left) quasi-
eigenvectors being promoted to the role of exact right (left)
eigenvectors of L(t).

Exploiting the formal equivalence between Eq. (6) and the
(imaginary-time) Schrodinger equation with a non-Hermitian
Hamiltonian, the same arguments illustrated above in the con-
text of unitary evolutions can be used here. We thus apply
the transformation C�1

(t) to both side of Eq. (6). After
some straightforward manipulation, the latter is rewritten in
the form

[LJ(t) + L0
J(t) + L0

nd(t)]|%iiJ = |%̇iiJ (9)

which is analogous to Eq. (2) and where we have introduced

L0
J(t) =

X
|�

⌫,µ⌫ iiC⌫,⌫

µ⌫ ,µ⌫
(t)hh�

⌫,µ⌫ |,

L0
nd(t) =

X
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(10)

with C⌫,⌫

0

µ⌫ ,µ
0
⌫0
(t) = hh�

⌫,µ⌫ | ˙C�1
(t)C(t)|�

⌫

0
,µ

0
⌫0 ii. In both

Eq. (9) and (10), the pedex J indicates that the matrix L(t) is
in the Jordan form and the coherence vectors are transformed
as |%iiJ = C�1|%ii.

For open systems, the problem of transitionless quantum
driving consists of finding an additional term Ltqd(t) such that
different Jordan blocks of L alone evolve independently under
the action of L(t) + Ltqd(t). Since the two terms LJ(t) and
L0
J(t) preserve the Jordan blocks structure, any admixture be-

tween different Jordan blocks is bound to arise from L0
nd(t).

Therefore, by using the same approach sketched in the unitary
case, we can infer the form of the additional term Ltqd(t) as

Ltqd(t) = �C(t)L0
nd(t)C

�1
(t). (11)

Eq. (11) extends and generalizes the result valid for the unitary
case [cf. Eq. (4)] to quantum open-system dynamics and is the
main result of this work. Just like in the unitary case, Ltqd(t)
encompasses the control that should be implemented so that
the state of the system remains, across the evolution, in an
instantaneous eigenstate. The required control term could be
either on the unitary part of the dynamics (i.e. an additional
Hamiltonian term), or in the non-unitary one, which would
require the engineering of a proper quantum channel.
Examples— In order to illustrate the general formalism de-
scribed above, let us now discuss some simple examples in-
volving a single-spin system.

The first addresses the case of a spin affected by the dephas-
ing mechanism described by the super operator

Lsd[%] = �[(n · ˆ�)%(n · ˆ�)� %], (12)

where ˆ� = (�̂
x

, �̂
y

, �̂
z

) is the vector of Pauli matri-
ces. The dephasing occurs along a direction in the single-
spin Bloch sphere identified by the unit vector n =

(sin ✓ cos�, sin ✓ sin�, cos ✓) with ✓ and � the azimuthal and
equatorial angle, respectively. In order to write explicitly
both the Liouvillian supermatrix L(✓,�) and the correspond-
ing coherence vector, we choose the ordered basis B ⌘
(I, �̂

x

, �̂
y

, �̂
z

). Let us now consider the case in which the
direction of dephasing n precesses around the z axis of the
Bloch sphere at a constant angular velocity !, maintaining a
fixed azimuthal angle ✓0, and a constant damping rate �. By
setting � = !t and employing the result in Eq. (11), we can
find the explicit form of the 4 ⇥ 4 supermatrix Ltqd(✓,!t)
required to achieve superadiabaticity in this example. An ex-
plicit calculation shows that a purely Hamiltonian contribu-
tion of the form Ltqd[%] = �i[ ˆHtqd(t), %] with ˆHtqd(t) =

(n ⇥ ˙n) · ˆ�, is sufficient to achieve a superadiabatic regime
(cf. the Additional material presented in Ref. [27] for an ex-
plicit analysis).

Let us now consider another simple example in which a
single spin undergoes a purely dissipative dynamics driven by
the amplitude damping operator

Lad[%] =
�

2

[2�̂�
n%�̂

+
n � {�̂�

n �̂
+
n , %}] (13)

with �̂�
n = (�̂+

n )
†
= |#inh"| is the lowering ladder operator

along the direction n and {|#i, |"i} are the two spin states of
the system. As in the previous example, we consider the case
in which the direction of the damping is time dependent. The
specific time-dependence of n is taken to be the same as in the
previous example, i.e. � = !t. Remarkably, the correction
term L

tqd

turns out to be the same as in the pure dephasing
problem.

The analysis of the examples above shows that, for sin-
gle spin system and in the cases in which the coefficient �
is constant and only the direction n in Bloch sphere changes
in time, the correction term Ltqd does not depend on the par-
ticular operator considered but only on the time-dependence
of n. This can be understood observing that when the only
time-dependent quantity is the direction in Bloch sphere, the
operators can be made time-independent by switching to an
appropriate rotating reference frame. Indeed, the correction
term is a magnetic field which at any instant induces a rota-
tion that cancels the time-dependence of the original Lindblad
superoperator.

Conclusions—We have proposed the extension of supera-
diabatic dynamics to systems undergoing an explicitly open
evolution. Although we have considered, for the sake of sim-
plicity, examples involving a single spin system, we would
like to stress the generality of the derivation of Eq. (11),
which embodies the main result of this work. The protocol
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The general case of non-trivial Jordan block can be treated analogously, although the correction
term would assume a more complicated (although conceptually equivalent) expression (cf [31]
for more details about the adiabatic approximation in open systems).

We now address the question of whether is possible to provide a necessary condition for
the Hermitian nature of the correction term in equation (15) is always Hermitian. Let us now
consider a Lindblad superoperator on the form

∑ρ
γ

Γ ρΓ Γ Γ ρ= ˆ ˆ − ˆ ˆ† †⎡⎣⎢ ⎤⎦⎥3 { }[ ] ( ) ( ) ( ) ( )t t t t
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2 , , (17)
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k k k k

where we assumed Γ Γˆ = ˆ ˆ ˆ†( ) ( ) ( )t U t U tk

k

0 for a given global unitary operator ˆ ( )U t and time-

independent jump operators Γ̂ .
k

0 By moving to a rotating frame defined by ˆ ( )U t and calling

ρ ρ˜ = ˆ ˆ †( ) ( ) ( )U t t U t the density matrix in such a frame, we get the Lindblad equation

∑ρ γ Γ ρΓ Γ Γ ρ˜̇ = ˆ ˜ ˆ − ˆ ˆ ˜ − ˆ̇ ˆ ϱ̃†⎡⎣⎢ ⎤⎦⎥ ⎡⎣ ⎤⎦{ } ( ) ( )i iU t U t
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That is, in the rotating frame generated by ˆ ( )U t , the time dependence of the Lindblad operator
is cancelled, and different eigenvectors will evolve independently. This simple argument shows
that, whenever the non-unitary part of the evolution of a system is governed by jump operators
such as Γ ( )tk , the superadiabatic correction is provided by the Hamiltonian term

ˆ = ˆ̇ ˆ †( ) ( ) ( )H t iU t U t .tqd A more formal proof is given in the appendix.

3. Examples

In order to illustrate the general formalism described above, let us now discuss some simple
examples involving a single-spin system. The first addresses the case of a single spin affected
by a dissipative mechanism described by the super operator

γ σ σ σ σϱ = ˆ ϱ ˆ − ˆ ˆ ϱ− + + −⎡⎣ ⎤⎦3 [ ] { }
2

2 , (19)n n n nad

σ σˆ = ˆ = ↓ ↑− + †( )n n n the lowering ladder operator along the direction n, and ↓ ↑{ }, the two
spin states of the system. The dissipation occurs along a direction in the single-spin Bloch
sphere identified by the unit vector θ ϕ θ ϕ θ= ( )n sin cos , sin sin , cos with θ and ϕ the
azimuthal and equatorial angle, respectively. In order to write explicitly both the Liouvillian
supermatrix θ ϕ( )L , and the corresponding coherence vector, we choose the ordered basis

σ σ σˆ ≡ ˆ ˆ ˆ ˆ0( )B , , ,x y z . Let us now consider the case in which the direction of the dissipation n

precesses around the z-axis of the Bloch sphere at a constant angular velocity ω, maintaining a
fixed azimuthal angle θ0, and a constant damping rate γ. By setting ϕ ω= t and employing the
result in equation (15), we can find the explicit form of the 4 × 4 supermatrix θ ω( )L t,tqd

required to achieve superadiabaticity in this example. An explicit calculation shows that a
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purely Hamiltonian contribution of the form ϱ = − ˆ ϱ⎡⎣ ⎤⎦3 [ ] ( )i H t ,tqd tqd with

σˆ = × ˙ · ˆ( ) ( )H t n ntqd , is sufficient to achieve superadiabaticity. Indeed, the correction term is
a magnetic field which at any instant induces a rotation that cancels the time-dependence of the
original Lindblad superoperator. Being equation (19) a particular case of the more general

expression in equation (17), the correction term corresponds to ˆ = ˆ̇ ˆ †( )H t iUU ,tqd as expected.
Let us now consider a simple example involving two qubits. We start by designing a

Lindblad operator which generate a time evolution map whose fix point is a Bell state

ψ = +( ) ( )1 2 00 11 . Such state can be obtain by applying a unitary operation Û to the

state 00 , where Û represent an Hadamard transformation on one of the qubit followed by a C-

NOT gate. The operation Û can be represented by the 4 × 4 matrix

ˆ = −
−

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟U

1
2

1 0 1 0
0 1 0 1
0 1 0 1
1 0 1 0

(20)

The Lindblad map having the state ψ as a fix point has the form given in equation (17) with
jump operators

Γ Γ= ˆ ⊗ ˆ ˆ = ˆ ˆ ⊗ ˆ† †0 0( ) ( )U U U U0 1 ; 0 1 (21)1 1 2 2 1 2

Let us now consider a unitary operation

θ θ
θ θ

θ θ
θ θ

ˆ =
−

−

ϕ

ϕ

ϕ

ϕ

−

−

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )U t

e
e

e
e

cos 0 sin 0
0 cos 0 sin
0 sin 0 cos
sin 0 cos 0

(22)

i

i

i

i

This unitary operation represents a generalization of the one given in equation (20) in which the
Hadamar transformation is substituted by a general rotation specified by the angles ϕ and θ.
The case we are interested in is the one in which such angles are time-dependent. For simplicity,
we assume ϕ = 0, so the only time-dependent parameter is θ ( )t . This means that the Jump

operators Γ ( )tk are now time dependent, with the time dependence included in the parameter

θ ( )t .
The scenario we consider is the following: we consider a Lindblad whose fix point is a

particular state, for example ψ = +( )( ) ( )t 1 2 00 11 ,0 which correspond to

θ π=( )t 4,0 with t0 the time at which the system has reached such state. At this point, we

can change the parameter θ, and consequently the jump operators Γ ( )t .k In such a way, the
stationary state of the system can be dragged from the initial state

ψ = +( )( ) ( )t 1 2 00 110 to the state ψ θ θ= +( )( ) ( ) ( )t t tcos 00 sin 11 at
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New J. Phys. 16 (2014) 053017 G Vacanti et al

8
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−

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟U

1
2
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0 1 0 1
0 1 0 1
1 0 1 0

(20)
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jump operators

Γ Γ= ˆ ⊗ ˆ ˆ = ˆ ˆ ⊗ ˆ† †0 0( ) ( )U U U U0 1 ; 0 1 (21)1 1 2 2 1 2
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θ θ
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−

ϕ

ϕ

ϕ

ϕ

−

−

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )U t

e
e

e
e
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0 cos 0 sin
0 sin 0 cos
sin 0 cos 0

(22)

i

i

i

i
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operators Γ ( )tk are now time dependent, with the time dependence included in the parameter

θ ( )t .
The scenario we consider is the following: we consider a Lindblad whose fix point is a

particular state, for example ψ = +( )( ) ( )t 1 2 00 11 ,0 which correspond to

θ π=( )t 4,0 with t0 the time at which the system has reached such state. At this point, we

can change the parameter θ, and consequently the jump operators Γ ( )t .k In such a way, the
stationary state of the system can be dragged from the initial state

ψ = +( )( ) ( )t 1 2 00 110 to the state ψ θ θ= +( )( ) ( ) ( )t t tcos 00 sin 11 at

time t. If the changes in the parameter θ ( )t are slow, the system will remain in the instantaneous
fix point at all times t with good approximation. On the other hand, by implementing the super-
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arbitrary single qubit rotation 
followed by a C-NOT. In this case the 
fixed point is!
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we assume ϕ = 0, so the only time-dependent parameter is θ ( )t . This means that the Jump
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The scenario we consider is the following: we consider a Lindblad whose fix point is a

particular state, for example ψ = +( )( ) ( )t 1 2 00 11 ,0 which correspond to

θ π=( )t 4,0 with t0 the time at which the system has reached such state. At this point, we

can change the parameter θ, and consequently the jump operators Γ ( )t .k In such a way, the
stationary state of the system can be dragged from the initial state

ψ = +( )( ) ( )t 1 2 00 110 to the state ψ θ θ= +( )( ) ( ) ( )t t tcos 00 sin 11 at

time t. If the changes in the parameter θ ( )t are slow, the system will remain in the instantaneous
fix point at all times t with good approximation. On the other hand, by implementing the super-
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by rotating q one can drag the fixed point



a two qubit example
by varying slowly    one can drag the fixed point ✓

such dragging can be achieved exactly with no constrains 
on speed by adding the following coherent driving:

adiabatic protocol for open systems, we can change the prepared state exactly and without the
constrain of slowly changing jump operators.

In this particular example, the super-adiabatic correction needed to obtain an exact driving

can be easily calculated as ˆ̇ ˆ †( ) ( )iU t U t . Using equation (22) with ϕ = 0, the correction is given
by

θ
θ

θ
θ

= ˆ̇ ˆ =
− ˙

− ˙
˙

˙

†

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
H iUU

i
i

i
i

0 0 0
0 0 0
0 0 0

0 0 0

(23)tqd

which can be written as

θ= − ˙ + +( )H i 00 11 01 10 h.c. (24)tqd

4. Conclusions

We have proposed the extension of superadiabatic dynamics to systems undergoing an
explicitly open evolution. Although we have considered, for the sake of simplicity, examples
involving only a small number of spins, the method that we have proposed is entirely general
and can indeed be applied to instances of more complex systems. For example, we foresee that
superadiabatic techniques for open system will play a key role in the context of dissipative
quantum state engineering [34–39] and in the emerging field of thermodynamics of quantum
systems. A promising result in this sense is provided by [40], where the design of superadiabatic
quantum engines has been reported. Moreover, in general, the class of problems for which the
time-dependent Lindblad superoperator admits one non-degenerate Jordan block with
eigenvalue λ = 00 for any t is of particular interest in the context of transitionless quantum
driving. Indeed, in this cases the system admit a unique stationary state for any time. The
correction term, in such case, can be seen as the one needed to keep the system in its exact
stationary state throughout the whole evolution.
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