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Quantum simulations through cooling

Major bottleneck in condensed matter physics:
Solving interacting model Hamiltonians.
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“I therefore believe it’s true that with
a suitable class of quantum machines
you could imitate any quantum

system, ncluding the physical world!
-Richard ?. Feynman 19%2




Quantum simulations through cooling

Two developments with cold atoms:
1) Tuning of interactions with Feshbach resonances (1998)
2) Creation of periodic optical potentials in various dimensions (2002)

Atomic physicists can create many-body Hamiltonians

Science, 320, 312 (2008)
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Quantum simulations through cooling

Laser and evaporative cooling do an impressive job but have limitations.

Important properties:
e Thermal isolation

e Time-dependent tunability

These properties make unitary evolution a
potential resource for transforming states.

Is 1t useful for cooling further?



The confines of the (second) law

“It 1s imposible, by means of inanimate material agency, to derive me-
chanical effect from any portion of matter by cooling it below the tem-
perature of the coldest of the surrounding objects.” Lord Kelvin
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H, Can tr |[Hppo(7)] < tr(Hppp)?

H(t) = Hy No for thermal py.

Can be proved rigorously using a celebrated theorem of
discrete math: Birkhoff-von Neumann theorem.



The confines of the (second) law

If we are interested 1n cooling a system with a Hamiltonian H),

we need to start from a different Hamiltonian.
One strategy:

4 Ve=0)=V,
- H=H +H,+V{A
HI f‘[—]z 1+ Hy + V({A}) Vit=1)=0

Assumptions:
1) We can tune {A(?)} 1n a given range
11) We can cool the system to 1/8¢ with current methods.

111) We have a time 7 to carry out a unitary process.
Goal:

Find the optimal A(¢) so that & = tr [H;o(7)] is minimized.



The confines of the (second) law

This 1s a problem in optimal control.

given p(0) and protocol A(t), 0 < t <7 ——> unique p(1)
Find the protocol A(¢) that minimizes a cost function & [p(7)]

P(7) 0(0)
—
Ptarget
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Changing the Hamiltonian




The confines of the (second) law

If we know & for arbitrary A(¢), we can do
straightforward simulated annealing.
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The case of two coupled quasicondensates

optical potentlal os‘c\‘
,ﬂ XCO‘\ p(O) = exp [_,BO(HI + H, + V(Ao))]

D
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V(A®)  cooled with current state of the art
H = H; + Hy + V(A1) tunable tunneling
D——

Harmonic approximation:

H = ZZ[ (M) + ’g’q (@%)

i ¢>0

V =-22 [dxcos[®(x) — Dr(x)] + ZM (@3 _(D?) tRed,

q>0

Hi= - f dx[fnf(m 48 (axcbxx))z]
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The case of two coupled quasicondensates

ki A 2o 2 4N
Each mode: m; = ﬁ, k; = —vig,-qz, A= —.
k2 TV T a

K1) = (ki + D)/my =4 \Jmimy
N\ A Nmmy (ke + D)/my )

normal-mode frequencies @; and @, K(1) = Q1) diag(®*, @3) 07 (1)

00 = 1 50610 (10331 (0) o2 (A0} (A1)
<
a(t) = Y [ui(0@(do) + vi()a} ()]
P T ¥
dynamical variables with simple initial conditions
and linear (in A(T — f)) equations of motion



The case of two coupled quasicondensates

(m(0) = te[al a1 po] = [ OP0) + Wi)P(1 + 7,(0))

V_ZZ(O) = tr I:ai(/lO)Tai(/lO) ,OO] — (eﬁod)i(/lo) — 1)_1

From single-mode to many-mode:

NIy =2 Y @l®), E@y=2v Y qnl®)

O<g<A O<g<A



The case of two coupled quasicondensates

L/a = 32, ,807' = 1.5, ApaxT =
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| g =11 ]
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The case of two coupled quasicondensates

Bang-Bang expected from Pontryagin’s maximum principle:

Dynamical variables

Equations of motion

Initial conditions

x(1)}

xj = fix, a})

x;(0) = x?

Maximize g({x(7)}) over all admissible {a(7)}.

A (x, p,a)) = D pi(t) filix,ah)
J

%* = %({x*,p*,a*}) — max%({x*,p*,a}),

{a




The case of two coupled quasicondensates

Bang-Bang protocol determined by sgn(d,.7¢)
L/ia=32,60t=15 Anaxt =5
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The protocol removes energy from H; and H, and puts it in the coupling V.
Should be generically possible in the absence of many-body localization.
At the end, we decouple (set V = 0), and wait to thermalize.



Challenge of a universal scheme

We saw in a simple example that

I. Coupling a quantum system to a replica, and performing optimal
control on the coupling constant can reduce its energy beyond the
current state of the art.

2. The cooling is significant: 3-5 times with dimensionless parame-
ters of order unity.

3. If we know the final energy for all allowed protocols, a simple
generic MC algorithm can find the optimal protocol.



Challenge of a universal scheme

For complicated systems, it is not easy to compute the final energy for
a given protocol.

How about letting the system itself do the MC?

prepare at 5y, evolve with a given protocol, measure the cost function

/

Nz 4 feed it into a classical computer

Pan- !

run a MC step, adjust the protocol, feed it back




