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Quantum Algorithms in Hamiltonian-based Models of QC
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[(0)) =|00...0) is initial state
H(?) is the time - dependent Hamiltonian path
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Adiabatic Quantum Computing
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Adiabatic Quantum Computing

HO H(f) ) @ Hf ..... H(Z—) ................

Input Hamiltonian HO

Eigenvalues: A,(?) <A (1) < A,(7)...
Ground state: \¢(t)>

Adiabatic theorem (Born-Fock)

A quantum system initially in its ground state will remain in its instantaneous
ground state in the limit in which the perturbation rate vanishes (7'>> 1).




Quantum Adiabatic Approximation

We rescale the time so thats=#/T,,, O=s=<1

H, = H(0) , H)=H,
H(s(t)) = H(t)

[9(s(2))) =|9(2))

Standard quantum adiabatic approximation [1]

[
(A)) " (As)

TAQC X rna'Xs<

'] I(s)
P(Thoo)) =, |9(D)

Eigenvalues of H(s)

[1] S. Jansen, M. Ruskai, and R. Seiler, J. Math. Phys.48, 102111(2007). +++



Adiabatic Quantum Computing: Equivalence and complexity

Any quantum circuit can be simulated with an adiabatic evolution [2]:

9,1 U,

U, = U,

I TTT1
11111

i H1)=fU,..U,);

Simple one or two-qubit gates

(g, Jw)|~1

Size of the system is polynomial in L

[2] D. Aharonov, et.al., SICOMP 37, 166 (2007). A. Mizel, D. Lidar, M. Mitchell, PRL 99, 070502 (2007).



Adiabatic Quantum Computing: Equivalence and complexity

Any quantum circuit can be simulated with an adiabatic evolution [2]:

U, = U,

>
[T
i
[T 111

i H1)=fU,..U,);

Simple one or two-qubit gates
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How many elementary gates do we need
to simulate the evolution operator?
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Adiabatic Quantum Computing: Equivalence and complexity

Any quantum circuit can be simulated with an adiabatic evolution [2]:

U, = U,
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i H1)=fU,..U,);

Simple one or two-qubit gates

(g, Jw)|~1

Size of the system is polynomial in L

U(T) = Slexp(-i [ HOdD] B8 U(T)=U,..U,

How many elementary gates do we need
to simulate the evolution operator?

* Sparse / L = poly(T)
* Bounded norm

[2] D. Aharonov, et.al., SICOMP 37, 166 (2007). A. Mizel, D. Lidar, M. Mitchell, PRL 99, 070502 (2007).
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Adiabatic Quantum Computing: Why?

Why do we really care about AQC?

Inherent robustness? Fault tolerance?

atural model for solving certain problems, such as combinatorial optimization

Provable quantum speedups?

Faster ways to prepare the final ground state?

evolution time T << T, ???
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Quantum Adiabatic Approximation: New methods

Issues with standard adiabatic approximations:

They may result in undesirably large and unnecessary costs!

-

In the last few years, we developed several methods to prepare the final ground
state in time much less than that given by AQC. Our methods resulted in
provable quantum speedups of several classical algorithms, such as Monte Carlo.

* Method 1: Evolution randomization (Boixo, Knill, Xu) “adiabatic state transformations”

* Method 2: Measurement based (Boixo, Knill)

“quantum annealing”

* Method 3: Diabatic transitions (Nagaj, Kieferova)




1. Evolution randomization [3]

As in AQC, the goal is to prepare the final ground state (or any eigenstate)

from the initial one by sequentially preparing the ground states (eigenstates)
along the path.

Assume a discretization for the eigenpath (path of ground states)

10 =5,,8;5....,8, =1}

5
9) |9,) R
9,)=|0Cs))

$(0)) =|¢,) 6,,) =|oD)

[3] S Boixo, E Knill, RDS, QIC 9, 0833 (2009). Chiang, Xu, RDS, PRA 89, 012314 (2014)



1. Evolution randomization: “Measurements”

Discretization for the eigenpath {0 = s,,s,,...,5, =1}

=

9) |#)

$(0)) =|¢,) 6,,) =|¢D)

A sequence of projective measurements into the ground
states prepares the final ground state with high probability




1. Evolution randomization: “Measurements”
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1. Evolution randomization: “Measurements”
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1. Evolution randomization: Path length

L=m.0
0
6) [6.) R
8,)=196) TN
\__/
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:> It suffices to pick O=&/L for overall error ¢ Path length



1. Evolution randomization: Cost
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1: Evolution randomization: Simulation of measurements

Simulation of projective measurement by evolution randomization

e—iHjt ¢]><¢]
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1: Evolution randomization: Simulation of measurements

Simulation of projective measurement by evolution randomization

e—iHjt ¢]><¢]
e—iHjt ¢]><¢]L 0

e+ier =‘¢]><¢]‘

o, #!)

Orthogonal eigenstate

A=A

+iH .t iA't
T =e




1: Evolution randomization: Simulation of measurements

Simulation of projective measurement by evolution randomization

~iH ;1 +iH jt
€ ¢f><¢je _‘¢J><¢J‘ A=A
—iH ;1 L| +iH .t iA't
o Moske =6, )(0])
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Orthogonal eigenstate /
f ~1/A
h < >
3 f(¢) such that , o o
) Evolution randomization can eliminate
T — . . . .
_iH 1 L] +iH 1 coherences, thus simulating a projective
fdt.f(t)e ¢J><¢J ¢ =0 measurement
0

—

T =1/ A suffices from Fourier analysis

1[?
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global cost: T

rand




1. Evolution randomization: Total cost

Simulation of projective measurement by evolution randomization

~iH ;1 +iH jt
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fdt.f(t)e ¢J><¢J € =0 | measurement
0

—

T =1/ A suffices from Fourier analysis
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global cost: T

rand

[3] S Boixo, E Knill, RDS, QIC 9, 0833 (2009). Chiang, Xu, RDS, PRA 89, 012314 (2014)



2. Measurement based

The main different with the other method is that we will simulate the

projective measurements in the ground states in a different way. Rather than

needing 0=¢/L, we will be able to choose a constant 0 and reduce the cost
(number of points in the discretization).

6 0,)

‘¢f> =‘¢(Sf)> ‘ —@_
(S —

1$(0)) =|¢,) 6,,) =|¢D)




2. Measurement based: Basic steps

One-step state transformations
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One-step state transformations

Goal: prepare ‘¢j> from ‘¢j_1> using reflection

oraclesR,_ =1 —2‘¢j_1><¢j_1‘ andR; =1 —2‘¢j><¢j‘
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Pseudocode:

1.Perform a projective measurement of ‘¢j>

2. If successful: STOP




2. Measurement based: Basic steps

One-step state transformations
Goal: prepare ‘¢j> from ‘¢j_1> using reflection

P E— | oracles R, , =1-2|¢, \(¢,,|and R, =1-2¢, )¢ |

0,)

Pseudocode:

1.Perform a projective measurement of ‘¢j>
2.1f successful: STOP
3. Else: Apply R,




2. Measurement based: Basic steps

One-step state transformations

Goal: prepare ‘¢j> from ‘¢j_1> using reflection

oraclesR,_ =1 —2‘¢j_1><¢j_1‘ andR; =1 —2‘¢j><¢j‘

9,

Pseudocode:

1.Perform a projective measurement of ‘¢j>

2. If successful: STOP

3. Else: Apply R,
4.Gotol.




2. Measurement based: Basic steps

One-step state transformations

Goal: prepare ‘¢j> from ‘¢j_1> using reflection

oraclesR,_ =1 —2‘¢j_1><¢j_1‘ andR; =1 —2‘¢j><¢j‘
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2. Measurement based: Basic steps

One-step state transformations

Goal: prepare ‘¢j> from ‘¢j_1> using reflection

oraclesR,_ =1 —2‘¢j_1><¢j_1‘ andR; =1 —2‘¢j><¢j‘

H T 7 HA
If 0 STOP
j-1 RJ- — If 1 Execute again

il
=

2

; gq=1-p

21287 ; p=‘<¢’ ?;)

Po=\(],1)

If p, >1/3 = (n) is order 1 and all moments are bounded




2. Measurement based: How to implement reflections

Assume we know the ground state energy Hj‘¢j> =0

R;

=1 _2‘¢j><¢j‘

|

Ancilliary
qubits

The phase estimation algorithm needs to resolve eigenvalues above the gap.

Quantum Phase
Estimation
Algorithm

)

andl

it requires a cost of 1/A:

e t=1/A

Quantum Phase
Estimation
Algorithm
(INVERSE)




2. Measurement based: Cost

global cost:

Iyyp &

L.log(L/¢g)

A

Almost optimal!



2. Measurement based: Cost

Llog(L/€) | Aimost optimal!
A

global cost: 17,,,

T=L/A [4]

|

Iye <<T_ ,<<T

rand AQC

[4] S. Boixo and R. Somma, PRA 81, 032308 (2010).



3. Diabatic transitions: Glued-Trees problem

=2n+1
ENTRANCE EXIT
(given) (unknown)

Each vertex is
randomly labeled as
a(VERTEX)

(given oracle access to A)

[5] A. M. Childs, R. Cleve, et.al., in Proc. 35th Annual ACM Symp. Theo. of Comp., p. 59 (2003)



3. Diabatic transitions: Glued-Trees problem

# of vertices: 2"*2- 2

=2n+1

ENTRANCE

(given)

EXIT
(unknown)

Each vertex is
randomly labeled as
a(VERTEX)

(given oracle access to A)

Classically it takes time exponential in n to find the exit. Quantumly it can be done
in time polynomial in n

[5] A. M. Childs, R. Cleve, et.al., in Proc. 35th Annual ACM Symp. Theo. of Comp., p. 59 (2003)



3. Diabatic transitions: Glued-Trees problem

=2n+1
ENTRANCE EXIT
(given) (unknown)

Each vertex is
randomly labeled as
a(VERTEX)

(given oracle access to A)

Can we solve this problem adiabatically?

[5] A. M. Childs, R. Cleve, et.al., in Proc. 35th Annual ACM Symp. Theo. of Comp., p. 59 (2003)



3. Diabatic transitions: Glued-Trees problem

Exponential speedups [6]
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H(s) = (1 - s)[ENTRANCE)ENTRANCE|+ s(1 - s)A + s|EXIT }EXIT|

)

Each vertex is
randomly labeled as
a(VERTEX)

[6] “Quantum speedup by quantum annealing”, RS, Nagaj, Kieferova, PRL 109, 050501 (2012)



3. Diabatic transitions: Quantum annealing
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3. Diabatic transitions: Quantum annealing [6]

H(s) = (1-s)|[ENTRANCE)ENTRANCE|+ s(1 — 5) A + s|EXIT )(EXIT|

Entrance

Adiabatically: exponential time

[6] “Quantum speedup by quantum annealing”, RS, Nagaj, Kieferova, PRL 109, 050501 (2012)



3. Diabatic transitions: Quantum annealing [6]

H(s) = (1-s)|[ENTRANCE)ENTRANCE|+ s(1 — 5) A + s|EXIT )(EXIT|

0.1r

021

03

Entrance {:@ Exit
I J
Adiabatic

04

[6] “Quantum speedup by quantum annealing”, RS, Nagaj, Kieferova, PRL 109, 050501 (2012)



3. Diabatic transitions: Quantum annealing [6]

H(s) = (1-s)|[ENTRANCE)ENTRANCE|+ s(1 — 5) A + s|EXIT )(EXIT|

Entrance

Diabatic transitions: polynomial time !!

Provable quantum speedup

[6] “Quantum speedup by quantum annealing”, RS, Nagaj, Kieferova, PRL 109, 050501 (2012)



3. Diabatic transitions: Importance & generalizations

Why is the result important? (Additional reasons)

* Recently, motivated by our results, a similar property on the spectrum of other
Hamiltonians for solving MAX 2 SAT was shown [7]. This provided faster annealing
algorithms for this problem.

DS
004 Non-adiabatic regime
003 “hard” instance
" 0.02' 20 bits
0.015
o.oofJ :
0 50 100 150 200
T

FIG. 2: The success probability as a function of total evolution time T for instance #1.

[7] E.Crosson, E. Farhi, C. Lin, H. Lin, P. Shor, arXiv: 1401.7320 (2014)



3. Diabatic transitions: Importance & generalizations

Why is the result important? (Additional reasons)

* The Hamiltonians involved do not suffer from the so-called sign problem. Then,
classical techniques such as quantum Monte Carlo can be used in these cases. Can
guantum annealing outperform quantum Monte Carlo? When the gaps are big, this
guestion remains unanswered.



Conclusions

* We presented methods for adiabatic state transformations that, in some cases,
are (almost) optimal and achieve a cost of L/A. Can we always achieve such cost?

* We presented a method to avoid the overheads due to extremely small gaps in
adiabatic state transformations. This method aims at adiabatically decoupling
subspaces and uses diabatic transitions to excited states.

* The techniques we presented allow for provable polynomial and exponential
speedups.



