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IfH(t) = H(R(t)) is “slowly varying”,

“transitions” are suppressed.

That is,

|n0i ! ei�|nti

when

~dR(t)

dt
⌧ |En(t)� Em(t)|
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En(t)

Em(t)

|nti

|n0i

Adiabatic theorem
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[ A. Messiah, Quantum Mechanics, Vol. II, (1965) ]

What does “slowly varying” mean?  
Can we have many energy crossings?
                 



� =

Z t

0
Endt

0 �
Z t

0
hnt0 |i d

dt0
|nt0idt0

|n0i ! ei�|nti
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Dynamic phase Geometric phase
(Berry phase)
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En(t)

Em(t)

|nti

|n0i
Adiabatic evolution:

[ M. Berry (1984);  F. Wilczek & A. Zee (1984) ]

more general: non-Abelian



The change of H(t) can not be infinitely slow,

and there is a nonadiabatic correction UDia(t).

Thus, the system evolution should be

U(t) = U
Dyn

(t) U
Geo

(t) U
Dia

(t).

H(t)|nti = En(t)|nti

Target: UDia(t) ! I

[H(t) +Hc]|nti 6= En(t)|nti

arXiv:1210.4323Nonadiabatic correction

Dynamic phase
Geometric phase

Nonadiabatic correction

5

Adiabatic evolution: 
Counterdiabatic driving:



U(t) = U
Dyn

(t) U
Geo

(t) U
Dia

(t). UDia(t) ! I

Need an exact UDia(t)

arXiv:1210.4323Adiabatic condition

* A widely used quantitative condition:

sufficient?  No

necessary?  Under debate
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[K.-P. Marzlin,  B.C. Sanders, D. M. Tong, 
M. H. S. Amin, Daniel Lidar, ...] 

* New proposed conditions energy crossing?
[Sergio Boixo, Daniel Lidar, Rolando Somma,  
D. Comparat, ... ] 

[J. E. Avron & A. Elgart] 
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hnt|ṁti

En(t)� Em(t)
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 [D. M. Tong, M. Zhao, J. Wu,  D. Comparat, ... ]

(with possible degeneracy)



U
Geo

(t) =
X

n,j

|nR
j ihnR0

j |Pei
R R
R0

P
n,p,q |nR0

p ihnR0
p |irR0 |nR0

q ihnR0
q |·dR0

UDyn(t) =
X

n,j

e�i
R t
0 En(t

0)dt0 |nt
jihnt

j |

|nt
ji ⌘ |nR

j i: eigenbasis of H(t)
with energy En(t) & degeneracy label j

parameters R[#(t)]

U(t) = U
Dyn

(t) U
Geo

(t) U
Dia

(t)
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UDia(t) = P exp

2

4i
Z #

#0

X

n 6=m;p,q

Fn,m(#0
)Gp,q

n,m(#0
)d#0
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degeneracy and 
crossings possible



UDia(t) = P exp

2

4i
Z #

#0

X

n 6=m;p,q

Fn,m(#0
)Gp,q

n,m(#0
)d#0
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Gp,q
n,m(#) = U†

Geo

(#)|n#
p i

✓
hn#

p |i
d

d#
|m#

q i
◆
hm#

q |UGeo

(#)

Fn,m(#) = ei
R t
0 [En(t

0)�Em(t0)]dt0

H(R(#)) =
P

n,p En(#)|n#
p ihn#

p |

arXiv:1210.4323Gauge invariant formalism

the  geometric function

the  modulation function

U(t) = U
Dyn

(t) U
Geo

(t) U
Dia

(t)
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sup
#2[#0,#T ]

�����

Z #

#0

Fn,m(#0)d#0

����� = ⇠avg, (n 6= m)

where g
tot

=
P

n 6=m gn,m and w
tot

=
P

n 6=m wn,m

gn,m ⌘ sup#2[#0,#T ]

||
P

p,q G
p,q
n,m(#)||

wn,m ⌘ sup#2[#0,#T ]

||
P

p,q
d
d#G

p,q
n,m(#)||

kU
Dia

(T )� Ik < ⇠
avg

�
g2
tot

+ w
tot

�
(#T � #

0

)

unitarily invariant norm || · ||

arXiv:1210.4323nonadiabatic correction

9

UDia(t) = P exp

2

4i
Z #

#0

X

n 6=m;p,q

Fn,m(#0
)Gp,q

n,m(#0
)d#0

3

5 Fn,m(#) = ei
R t
0 [En(t

0)�Em(t0)]dt0



⇠avg ! 0

The condition ⇠avg ! 0 is su�cient because Fn,m(#) are
fast oscillating functions and the slowly varying functions

Gp,q
n,m(#) are averaged out.

If the adiabatic limit UDia(t) ! I is valid for arbitrary

finite smooth paths, we can always find some paths which

lead to ⇠avg ! 0.
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A necessary and sufficient condition

sufficiency:

necessity:

sup
#2[#0,#T ]

�����

Z #

#0

Fn,m(#0)d#0

����� = ⇠avg, UDia(t) = P exp

2

4i
Z #

#0

X

n 6=m;p,q

Fn,m(#0
)Gp,q

n,m(#0
)d#0

3

5
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(Riemann-Lebesgue lemma)



F
n
,m
(#
)
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sup
#2[#0,#T ]

�����

Z #

#0

Fn,m(#0)d#0

����� ! 0To have

Fn,m(#) = ei
R t
0 [En(t

0)�Em(t0)]dt0

Large energy gaps 
(i.e., slow parameter changes)
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Pulse sequence
(similar to dynamical decoupling)
for DD, see: Quantum Error Correction,
Lidar and Brun, Cambridge University Press (2013)
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�Dia = |h |(UDia(T )� I)| i|
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Adiabatic evolution by pulses

similar to eigenpath traversal by measurement, 
evolution by phase randomization,
[Childs et al.] & [Sergio Boixo, E. H. Knill, Rolando Somma]

but unitary



arXiv:1210.4323Fast continuous driving
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The idea is illustrated by a two-level system in Fig. 1.
Between the pulses there is no control and the system is
gapless with H(t) = 0 [29], which is not the setting of previous
works [4–12, 15]. The pulses are applied in the order of
the parameters Rk = R1, R2, . . . , RN , which sample a path
gradually, and they induce the modulation functions Fn,m(#)
to average out the e↵ects of nonadiabatic transitions. The
actual time duration of each pulse can be arbitrary (within the
coherence time). For M non-degenerate subspaces, we can
choose ✓n(Rk) = 2⇡n/M with n = 1, · · · ,M. If the system
is a spin-J system, the pulses are just rotations with an angle
2⇡/(2J + 1) by a magnetic field that defines the eigenstates
|nRk

j i. If we apply the pulses equidistantly during the pa-

rameter range [#0,#T ], the integral
R #
#0

Fn,m(#0)d#0 = O(1/N)
vanishes at large N. The dynamic phase is

P
k ✓n(Rk) and the

geometric phase factor UGeo(T ) is given by Eq. (8) with the
path sampled by the points Rk. Note that this pulse sequence
is di↵erent from dynamical decoupling pulse sequences [30–
32], which also use pulses to induce modulation functions
to average out unwanted evolution [33]. Here the pulses
are parametrized by a path sampled by {Rk} and are used
to suppress state transitions caused by the change of system
eigenstates, whereas dynamical decoupling uses pulses in
some fixed directions and has the purpose to suppress system-
environment interactions.

Another way to traverse an adiabatic path is using a
sequence of projective measurements [34–36]. If we begin
in the ground state of H(R0) and successively measure
H(R1),H(R2), · · · ,H(RN), then the final state will be the
ground state of H(RN) with high probability, assuming the
di↵erence between successive points is su�ciently small. The
advantages of our method are the following: the control is
unitary and is easier to implement in experiments; the states
do not collapse and the traversal of the path is deterministic;
the (non-Abelian) geometric phases are preserved in the
whole state space during the evolution. In addition, similar
to dynamical decoupling realized by continuous driving fields
in some fixed directions [37–40], our method works for fields
varying continuously in amplitudes and directions (see the
later part of this work).

A spin- 1
2 driven by a pulse sequence. An example of the

pulses in Eq. (15) for a spin- 1
2 is a sequence of equidistant ±⇡

rotations along the directions x̂ sin ✓ cos#k + ŷ sin ✓ sin#k +
ẑ cos#k with

#k = (#T � #0)
 

2k � 1
2N

!
+ #0, for k=1,. . .,N, (16)

and #0 = 0 (see Fig. 1). Since the sampling
of # is similar to the timing of Carr-Purcell (CP)
sequences [41], we denote our sequence as CPGeo pulse
sequence for convenience. Each of the unitary pulse,
P(#k) =

P
± exp

h
±i(�1)sk ⇡

2

i
|#±k ih#±k | with sk 2 {±1},

introduces a ±⇡ phase shift between the instantaneous
eigenstates |#±k i. To isolate the geometric phase by cancelling
the dynamic phase [42, 43], we can use equal numbers of
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Figure 2: (Color online). The modulation functions F#"(#) of a
spin- 1

2 in a scaled period. Red solid (blue dashed) lines for the
real (imaginary) part of F#"(#). (a) for the modulation function of
a pulse sequence, (b) for a constant field Bconst, and (c) and (d) for
fast varying fields B⇡ and B2⇡, respectively.

Figure 3: (Color online). The average deviation �Dia as a function of
CPGeo pulse number N, with red circles (blue squares) for even (odd)
N. Here #0 = 0, #T = 2⇡, and ✓ = ⇡/6.

+⇡ and �⇡ pulses. The geometric (Berry) phase from #0
to #T is UGeo(T ) =

P
± |#±T ih#±0 |e±i 1

2#T cos ✓, and UDia(T ) =

P exp

�i
2

R #T

#0

⇣
sin ✓F#"(#)ei cos ✓#| #ih" | + H.c.

⌘
d#

�
, where

the modulation function F#"(#) = (�1)k when # 2 (#k�1,#k]
[see Fig. 2(a)]. Note that if we apply 2⇡ rotations on the
spin- 1

2 , even though the energy gaps are larger during the
control, the modulation function F#"(#) = 1 does not have
averaging e↵ects and the adiabatic evolution is not realized.

We measure the nonadiabatic correction at the moment T
numerically by the average deviation �Dia ⌘ |h |DDia(T )| i|,
where the over bar is the average over all possible states | i.
We plot the deviation �Dia under the control of CPGeo pulses in
Fig. 3, which shows that as the number of pulses increases, the
nonadiabatic evolution is smaller because of better averaging.
The CPGeo sequences with even number of pulses have better
performance than those with odd N. Note that with ✓ = ⇡/2
and at the moment T , DDia(T ) = 0 under the CPGeo sequences
with any pulse number N � 1.

A spin- 1
2 driven by continuously varying fields. Fast vary-

ing fields that are changing continuously can also lead to adi-
abatic evolution and can have better performance than slowly
varying fields in traditional adiabatic evolution. Consider the
driving fields B(t) (

x̂ sin ✓ cos# + ŷ sin ✓ sin# + ẑ cos#) on a
spin- 1

2 with # = !t, where B(t) has the values (i) B⇡(t) =
⌦
2 [1 + � cos(⌦t)], (ii) B2⇡(t) = 2B⇡(t), and (iii) Bconst(t) =

� � � � � � ����
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If U(t) = T e�i
R t
0 H(t0)dt0

is adiabatic, both H(t) and

¯H(t) = �U†
(t)H(t)U(t) satisfy the condition.

But the evolution by

¯H(t) is not adiabatic.

|n̄t
ji = U †(t)|nt

ji

¯UDia(t) = P exp

h
i
R #
#0

P
n 6=m;p,q G

p,q
n,m(#0

)d#0
i

Ḡp,q
n,m(#) = e�i

R t
0 [En�Em]dt0Gp,q

n,m(#)
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(with possible degeneracy)

����
hnt

p|ṁt
qi

En(t)� Em(t)

���� ⌧ 1

* A widely used quantitative condition:

sufficient?  No
necessary?  No

For the “bar” system:
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