
Lecture 2: Chemical Reaction Rate Theory, continued

In the last class, we considered a unimolecular reactions of the form

A �B (1)

where kBA and kAB are the forward and reverse rate constants, respectively.

We then derived the exact quantum mechanical rate expression in the flux-side formulation:

kBA = 1

xA
lim

t→“∞"
C̃ f s(t ), (2)

where t → “∞" indicates that plateau region of the TCF after dynamical recrossing, the Kubo-

transformed flux-side time correlation function is

C̃ f s(t ) =Tr
{
ρ0F̃ (0)hB(t )

}
, (3)

and in the classical mechanical limit, this correlation function becomes

C (cl)
f s (t ) = 〈δ(q0 −q∗)q̇0hB(qt )〉0, (4)

A. Transition State Theory

The central assumption of transition state theory (TST) is that once the system reaches

the “transition state" (i.e., the location of the dividing surface, q(r) = q∗, that separates the

reactant from the product), then it proceeds to the product without any dynamical recrossing.

Considering this statement in the context of the flux-side formulation of the rate, it is clear that

the TST approximation corresponds to the t → 0+ limit of the rate expression.

B. Classical TST

Taking the t → 0+ limit of the rate expression leads to the classical mechanical expression

for the TST rate,

k(TST)
BA = 1

xA
lim

t→0+
C (cl)

f s (t ) = 1

xA
lim

t→0+
〈δ(q0 −q∗)q̇0hB(qt )〉0, (5)
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This can be simplified by considering the term

lim
t→0+

δ(q0 −q∗)hB(qt ) = lim
t→0+

δ(q0 −q∗)Θ(qt −q∗) (6)

= lim
t→0+

δ(q0 −q∗)Θ(q0 + q̇0t −q∗) (7)

= lim
t→0+

δ(q0 −q∗)Θ(q̇0t ) (8)

= δ(q0 −q∗)Θ(q̇0) (9)

Using this result, we can express the classical flux-side correlation function in terms of the

classical phase-space distribution

lim
t→0+

C (cl)
f s (t ) = lim

t→0+
1

2π~

∫ ∞

−∞
dp0

∫ ∞

−∞
dr0e−βH(p0,r0)δ(q0 −q∗)q̇0hB(qt ) (10)

= 1

2π~

∫ ∞

−∞
dp0

∫ ∞

−∞
dr0e−βH(p0,r0)δ(q0 −q∗)q̇0Θ(q̇0) (11)

= 1

2π~

∫ ∞

0
dp0

∫ ∞

−∞
dr0e−βH(p0,r0)δ(q0 −q∗)q̇0 (12)

= 1

2πβ~

∫ ∞

−∞
dr0e−βV (r0)δ(q0 −q∗) (13)

≡ 1

2πβ~
e−βF (q∗), (14)

where in the last line we have introduced the notation for the free energy surface as a function

of the reaction coordinate, F (q), evaluated at the dividing surface. We thus arrive at the final

expression for the classical TST rate,

k(TST)
BA = 1

xA

1

βh
e−βF (q∗) (15)

The major advantage of this result is that an often-useful approximation to the rate is obtained

exclusively from statistical quantities - no dynamics required!

C. Quantum TST?

The natural way forward to obtain the quantum mechanical TST rate is to similarly consider

the t → 0+ of the quantum mechanical flux-side rate expression

k(TST)
BA = 1

xA
lim
t→0

C̃ f s(t ) (16)

However, as emphasized in the previous lecture, since C̃ f s(t ) is a time-derivative of an autocor-

relation function, we have

C̃ f s(t ) =−C̃ f s(−t ), (17)
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such that C̃ f s(t ) is an odd (and real and continuous) function of time. Therefore,

k
(TST,QM)
BA = 0. (18)

For this reason, it has been argued by some that unlike classical mechanics, quantum mechanics

does not have a well-defined TST limit for the rate.

As a pragmatic approach to including quantum effects in a TST rate expression, one can

simply include quantum effects through the calculation of the TST rate in Eq. 15, except with

the free energy value obtained from the quantum mechanical expectation value. This approach

assumes that motion along the reaction coordinate is separable from motion on the dividing

surface, treating the former as classical and the latter as quantum mechanical. Alternative

treatments remove this assumption of separability and include tunneling along the reaction

coordinate.1−4
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D. Computational advantage of the flux-side formulation: The Bennett-Chandler Approach

As emphasized in the last class, the characterization of the reaction rate in terms of the

side-side correlation function,

C̃hAhA(t ) = x2
A+xAxBe−t/τ, (19)

requires the dynamics to be run for exponentially long times in order to extract the exponen-

tial decay associated with the reaction rate. We now illustrate that the flux-side correlation

function substantially reduces the length of time for which the correlation functions need to be

propagated.
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For simplicity, we consider the classical limit, rearranging the classical flux-side rate expres-

sion

k(cl)
BA = 1

xA
lim

t→“∞"
〈δ(q0 −q∗)q̇0hB(qt )〉0 (20)

=
(〈δ(q0 −q∗)〉0

xA

)(
lim

t→“∞"

〈δ(q0 −q∗)q̇0hB(qt )〉0

〈δ(q0 −q∗)〉0

)
(21)

where the first term in the final result is a purely statistical quantity (∝ e−βF (q∗)) and the

second term includes all of the dynamical recrossing. Specifically, the second term specifies

that trajectories should be started from the classical Boltzmann distribution restrained to the

dividing surface, and then the initial velocities should be correlated with hB for the time-

evolved trajectory. The beauty of this Bennett-Chandler approach is the dynamics need only

be evolved for long enough for the molecule to leave from the dividing surface and thermalize

in the reactant or product region. This occurs on the molecular timescale, rather than the

exponentially long timescale of thermal activation of the barrier crossing event, a huge savings!

E. Factors that influence dynamical recrossing

In the classical limit, it is natural to quantify dynamical recrossing across the dividing surface

in terms of the transmission coefficient

κ(t ) =
C (cl)

f s (t )

C (cl)
f s (0)

(22)

such that

lim
t→“∞"

κ(t ) = k(cl)
BA

k(TST)
BA

(23)

The amount of observed recrossing follows from both physical features of the system (such

as the amount that motion along the reaction coordinate is coupled to the other degrees of

freedom), as well as the choice of the dividing surface for the system. The latter point is

clear upon realizing that both the quantum reaction rate (Eq. 2) and the classical reaction rate

(Eq. 4) are independent of the choice of the dividing surface (so long as it successfully divides

the thermally accessible regions associated with the reactant and product). In fact, it is clear

from the Bennett-Chandler expression for the rate (Eq. 21) that if the dividing surface were

to be shifted in position, the dynamical recrossing term precisely compensates for the term

that describes the Boltzmann probability of reaching the dividing surface. Since the Boltzmann
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weight varies exponentially with the dividing surface, we expect that the transmission coefficient

becomes vanishingly small as we place the dividing surface away from the maximal free energy

along the reaction coordinate. In this sense, the classical (and quantum) rates are invariant to

the choice of dividing surface, but calculating the dynamical recrossing contribution to the rate

is much easier if the dividing surface is located near the free-energy maxima.


