
Lecture 3: Path-Integral Statistics

Time-dependent perturbation theory and the fluctuation dissipation theorem enable dynam-

ical quantities of interest - including rate constants, diffusion constants, absorption spectra, etc.

- to be expressed in terms of equilibrium time-correlation functions of the form

C̃ AB (t ) = 1

Q
Tr

[
ρ0 Ã(0)B(t )

]
. (1)

For the next few classes, we shall turn out attention to strategies for numerically evaluating

these quantum TCFs. However, as an example, we can consider the special case of B = 1, such

that Eq. 1 simplifies to

C̃ A1(t ) = 1

Q
Tr

[
ρ0 Ã

]= 1

Q
Tr

[
ρ0 A

]= 〈A〉0, (2)

the equilibrium quantum mechanical expectation value of operator A. Therefore, before launch-

ing into the discussion of how to calculate quantum-mechanical equilibrium (i.e., thermal) TCFs,

we must first discuss how to calculate quantum-mechanical thermal expectation values.

A. Boltzmann Statistics for a quantum system

Consider a system with Hamiltonian operator

Ĥ = K̂ (p̂)+ V̂ (x̂), (3)

where K̂ is the kinetic energy operator, which is pure function of the momentum, p̂ . We

consider a system with one dimension, although generalization of the results presented here

is straightforward. The Boltzmann statistics for this system is given by the canonical partition

function

Q =∑
ν

e−βEν , (4)

where {Eν} are the energy eigenvalues of the Hamiltonian, with associated eigenfunctions, {ψν}.

Bear in mind that exact calculation of each of these eigenstates scales exponentially in cost with

the dimension of the system, and also bear in mind that large systems with many thermally

accessible states (such as the vibrational manifold of liquids) would require a huge number of

states to converge this sum. From this perspective, the exact evaluation of the partition function

in Eq. 4 is a daunting challenge.
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B. Path-integral discretization

To obtain a more computationally tractable form of Eq. 4, we begin by exactly rewriting it

in the position representation:

Q =∑
ν

〈ψν|e−βĤ |ψν〉 =Tr
[

e−βĤ
]
=

∫
d x〈x|e−βĤ |x〉 (5)

Then, using that e−βĤ = e−βĤ/2e−βĤ/2 and the resolution of the identity in the position repre-

sentation,

1 =
∫

d x|x〉〈x|, (6)

then Eq. 5 becomes

Q =
∫

d x
∫

d x ′〈x|e−βĤ/2|x ′〉〈x ′|e−βĤ/2|x〉 (7)

=
∫

d x1 . . .
∫

d xn

n∏
j=1

〈x j |e−βn Ĥ |x j+1〉, (8)

where βn =β/n and xn+1 = x1.

At first, this would not seem to have provided any real advantage. After all, through the

various exact manipulations, we have simply rewritten the original trace in terms of other

matrix elements that are equally hard to evaluate exactly. And yet there is an advantage, which

arises from the fact that the matrix elements in Eq. 8 correspond to arbitrarily high temperature

(βn = (kBnT )−1) and thus may be expected to become more classical mechanical in nature. This

can be seen upon considering the matrix element:

〈x|e−βn Ĥ |x ′〉 = 〈x|e−βn (K̂ (p̂)+V̂ (x̂))|x ′〉 = 〈x|e−βn K̂ (p̂)e−βnV̂ (x̂)|x ′〉+O(β2
n), (9)

where the error term vanishes with increasing n (i.e., increasing temperature of the matrix ele-

ment). Note that this error term is identical to the one previously encountered in our discussion

of the split-operator approach to integrating wavepacket dynamics; in the path-integral context,

neglect of this error term is often called the Trotter approximation.

As seen previously for the SOFT method, the advantage of introducing the Trotter approx-

imation is that it allows for simple evaluation of the potential energy operator in the position

representation,

〈x|e−βn Ĥ |x ′〉 = 〈x|e−βn K̂ (p̂)|x ′〉e−βnV (x ′) +O(β2
n), (10)

and it allows for simple evaluation of the kinetic energy operator in Fourier space, such that by

following the steps:
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• Express K̂ = p̂2

2m ,

• Introduce the resolution of the identity in the momentum representation: 1 = ∫
d x|x〉〈x|,

• Introduce the free particle wavefunction in the position rep.: 〈x|p〉 = 1p
2π~

e−i px/~,

• Complete the square and evaluate a Gaussian integral in p,

we obtain

〈x|e−βn K̂ (p̂)|x ′〉 =
(mωn

2π~

)1/2
e−βn

( 1
2 mω2

n (x−x ′)2
)
, (11)

where ωn = (βn~)−1.

Finally, combining the results from Eqs. 8, 10, and 11, we obtain the path-integral represen-

tation for the canonical partition function

Q = lim
n→∞

(mωn

2π~

)n/2
∫

d x1 . . .
∫

d xne−βUeff(x) (12)

where

Ueff(x) = 1

n

n∑
j=1

1

2
mω2

n(x j −x j+1)2 + 1

n

n∑
j=1

V (x j ). (13)

Remarkably, Eq. 12 is an exact expression for the quantum Boltzmann statistics of the system,

expressed in terms of a classical mechanical configuration integral for ring-polymer with each

bead in the ring polymer comprised of a copy of the system at a different position. This

rigorous mapping is called the quantum-classical isomorphism, which was originally derived by

Feynman and brought into the chemistry literature by Chandler and Wolynes (1981).


