
Lecture 4: Analytical Continuation

In the last class, we showed that Feynman path integrals provide an appealing and computa-

tionally tractable strategy for evaluating quantum Boltzmann statistical quantities, which stem

from the canonical partition function,

Q =∑
ν

e−βEν , (1)

in terms for a classical configuration integral of an isomorphic ring-polymer system

Q = lim
n→∞
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2π~

)n/2
∫
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d xne−βUeff(x) (2)

where
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V (x j ) (3)

and V (x) is the potential energy function for the system.

In the current class, we recognize that that correlation functions evaluated on the imaginary-

time axis can be analytically continued onto the real-time axis, thus providing an avenue for

(numerically tractable) quantum statistical results to be used for the evaluation of (numerically

intractable) exact quantum dynamics properties.

A. Time correlation functions on the imaginary- and real-time axes

Thus far, we have considered “imaginary-time" path integrals, involving matrix elements of

the form

〈x|e−βĤ |x ′〉. (4)

Allowing β to be an imaginary number β= i t/~, we see that this matrix element becomes the

familiar quantum mechanical time-evolution matrix element

〈x|e−i t Ĥ/~|x ′〉. (5)

As this suggests, there are profound connections between information on the real-time and

imaginary-time axes of quantum mechanical TCFs.

Consider the quantum TCF for the autocorrelation of operator Â, in the standard form:

C (t ) = 1

Q
Tr

[
e−βĤ Âe i t Ĥ/~ Âe−i t Ĥ/~

]
= 〈A(0)A(t )〉. (6)
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Now, allowing time to be complex:

C (t + iλ~) = 〈A(0)A(t + iλ~)〉 = 1

Q
Tr

[
e−(β−λ)Ĥ Âe−λĤ e i t Ĥ/~ Âe−i t Ĥ/~

]
(7)

where we see the splitting of the Boltzmann operator across the time-zero evaluation of the

operator, which is familiar from the Kubo-transform. For a Hamiltonian with energy spectrum

that is bounded from below (but not necessarily above) note that this splitting only makes

sense for λ ∈ [0,β], such that the TCF in Eq. ?? is an analytical function only in the range

λ ∈ [0,β], t ∈ (−∞,∞).

B. Evaluation of an imaginary-time correlation function

Assuming that Â(x̂) is a function of position, we now consider numerical evaluation of the

TCF on the imaginary-time axis,

C (iλ~) = 1

Q
Tr

[
e−(β−λ)Ĥ Âe−λĤ Â

]
, λ ∈ [0,β]. (8)

Discretizing λ j =βm j , j = 1, . . . ,n, where βn =β/n, we have

C (iλ j~) = 1

Q
Tr

[
e−βn (n− j )Ĥ Âe−βn j Ĥ Â

]
, (9)

and introducing resolutions of the identities and performing the Trotter approximation, we

obtain

C (iλ j~) = 1

Q

∫
d x1 . . .

∫
d xn

j∏
k=1

〈xk |e−βn Ĥ |xk+1〉A(x j )
n∏

l= j+1
〈xl |e−βn Ĥ |xl+1〉A(x1) (10)

= 1

Q

(mωn

2π~

)n/2
∫

d x1 . . .
∫

d xne−βUeff(x) A(x1)A(x j ) (11)

We thus see that correlation functions on the imaginary-time are straightforwardly obtained

from purely statistical quantities and may thus be evaluated using either classical Monte Carlo

or molecular dynamics sampling techniques. Intriguingly, using the analyticity of the TCF, it

indicates that all real-time dynamics is in principle available from a purely classical calculation!

We now investigate how this works in practice...

C. Relating real and imaginary time via analytical continuation

First, we perform a brief digression to establish that the TCF in the standard form (C (t ),

Eq. ??) contains the same information as in the Kubo-transformed TCF that we have seen



3

previously,

C̃ (t ) = 1

βQ

∫ β

0
dλ Tr

[
e−(β−λ)Ĥ Âe−λĤ e i t Ĥ/~ Âe−i t Ĥ/~

]
=

∫ β

0
dλ C (t + iλ~). (12)

To prove this, we consider the Fourier transform of C (t + iλ~),

P (λ)(ω) =
∫ ∞

−∞
d t e−iωtC (t + iλ~) (13)

= 2π

Q

∑
i , j

|Ai j |2e−βEi−λ(E j−Ei )δ(ω− (E j −Ei )/~), (14)

where we have expanded the trace and introduced a resolution of the identity in terms of the

energy eigenstates of the system. It is thus easy to show (see homework) that

P (0)(ω) = P̃ (ω)
β~ω

1−e−β~ω , (15)

where the LHS is the Fourier transform of the TCF in the standard form and the RHS is the

Fourier transform of the Kubo-transformed TCF

P̃ (ω) = 1

β

∫ β

0
dλ P (λ)(ω). (16)

Eq. ?? indicates that the standard and Kubo-transformed versions of the TCF have the same

information content.

Then, as shown in Ref. 1, the imaginary-time and real-time axes of the TCF can be related

via

C (iλ~) =
∫ ∞

0
g+(λ, t )C̃ (t )d t , (17)

where g+(λ, t ) = Re[g (λ, t )] and

g (λ, t ) =−π
(
2β~sinh2

(
πt

β~
− i

πλ

β

))−1

(18)

is an easily evaluated function.

Note that Eq. ?? is a remarkable result that directly relates information on the imaginary-tine

axis C (iλ~) to the exact real-time dynamics of the system (via C̃ (t )). It would seem that all that

we have to do is to evaluate C (iλ~) via classical statistical mechanical sampling methods, and

then invert Eq. ?? to obtain the real-time dynamics. Unfortunately, this inversion is numerically

ill-conditioned, such that very small numerical errors on the imaginary-time axes create very

large numerical uncertainties on the real-time axis. As a result, numerical methods based

on analytical continuation are primarily limited to the characterization of real-time dynamics
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dynamics on short timescales (typically, t ∼β~, for which the inversion can be stably performed),

which limits the practical utility of the method. Therefore, we shall next turn our attention to

methods that use imaginary-time path-integrals to approximate the real-time dynamics.
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