
Lecture 5: Quantized Molecular Dynamics

In the preceding classes, we have emphasize that imaginary-time Feynman path integrals

provide an appealing and computationally tractable strategy for evaluating quantum Boltzmann

statistical quantities, expressing the quantum mechanical canonical partition function in terms

of an isomorphic classical ring-polymer system:
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is the ring-polymer effective potential, V (x) is the potential energy function for the physical

system, and mn = m/n is the mass of each ring-polymer bead. Using the classical equations of

motion for the ring-polymer Hamiltonian

ẋ j = ∂Hn

∂p j
, and ṗ j =−∂Hn

∂x j
, (4)

it is clear that we can numerically sample the exact quantum Boltzmann distribution for the

system. In the last class, we also showed that such imaginary-time path-integral calculations

should provide (in principle) all real-time dynamics information via analytical continuation, but

this turns out to be numerically intractable in most practical cases.

In the current class, we consider the use of the classical ring-polymer trajectories to conve-

niently obtain approximate quantum mechanical time correlation functions (TCFs), in addition

to exact statistical quantities.

A. Ring-Polymer Molecular Dynamics

Ring-polymer molecular dynamics (Manolopoulos, 2004) employs the classical mechanical

ring-polymer trajectories (Eq. 4) to approximate the Kubo-transformed quantum mechanical
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TCF for position-dependent operators A and B :

C̃AB(t ) ≡ 1

βQ

∫ β

0
dλ Tr

[
e−(β−λ)Ĥ Âe−λĤ e i t Ĥ/~ Âe−i t Ĥ/~

]
(5)

≈ (2π~)−n

Q

∫
dx0

∫
dp0 e−βHn (x0,p0) An(x0)Bn(xt ) (6)

where An(x) = 1
n

∑n
j=1 A(x j ) and Bn(x) = 1

n

∑n
j=1 B(x j ) are the bead-averaged evaluation of op-

erators A and B , respectively.

At an intuitive level, the RPMD approximation is compelling: the RHS of Eq. 6 assumes the

form of a classical mechanical time-correlation function, and as we have seen previously in the

this class, the Kubo-transformed version of the exact quantum mechanical TCF that is most

compatible with symmetries and expressions of classical mechanics.

At a formal level, the RPMD approximation can be shown to satisfy many properties of exact

quantum mechanics. For example, if we consider the t = 0 value of the TCF, it is straightforward

to show that this is exactly satisfied in the RPMD approximation. [PUT THIS IN] Similarly, the

RPMD approximation can be shown to exhibit other important properties, including

• Exact dynamics in the classical mechanical (high-temperature) limit.

• Exact dynamics for a purely harmonic potential energy surface.

• Exact description of the Kubo-transformed TCF in the t → 0 limit, with leading-order

errors of O(t 7) for linear operators and O(t 5) for non-linear operators.

However, from a practical standpoint, the most important advantage of the RPMD approxi-

mation is that it the RPMD equations of motion preserve the quantum Boltzmann-distribution.

Therefore, RPMD exactly satisfies the classical Liouville Equation and the classical Liouville

theorem, but with respect to the quantum mechanical Boltzmann distribution. To understand

the importance of this, recall our derivation of the flux-side formulation of the reaction rate: A

critical property of the dynamics that made this formulation possible was that the equilibrium

distribution was invariant under the dynamics of the system. If this property were not satisfied,

we would not have been able to arrive at the computationally tractable flux-side formulation,

with the reaction rate strictly independent of the location of the dividing surface! As another

example, consider a simulation of a liquid-phase system that is close to a first-order phase tran-

sition, such that quantum zero-point energy is important for keeping the system in the liquid

phase; without proper preservation of the quantum Boltzmann distribution, the system might
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undergo phase separation as a function of time, purely as an artifact of the approximation to

the dynamics! (Other examples in slides.)

Of course, an obvious shortcoming of the RPMD approximation is that we have eliminated

all phase information from the real-time dynamics (note the lack of imaginary numbers...). We

may thus expect RPMD to fail for problems that involve strong real-time quantum coherence

effects, which is indeed the case. (Examples in slides.)

B. Centroid Molecular Dynamics

An important method that is closely related to RPMD (and which precedes it by a decade

(Voth, 1994)) is centroid molecular dynamics, which reduces the path-integral representation of

the ring-polymer with respect to all degrees of freedom other than the centroid mode. Starting

from the path-integral representation for the partition function

Q = lim
n→∞ (const)

∫
dx e−βUeff(x), (7)

where Ueff(x) is the same ring-polymer effective potential from Eq. 3, we can reduce this distri-

bution with respect to the centroid position of the ring-polymer,

x̄ = 1

n

n∑
j=1

x j , (8)

such that

Q = lim
n→∞ (const)

∫
d x̄

∫
dx δ

(
x̄ − 1

n

n∑
j=1

x j

)
e−βUeff(x) (9)

= lim
n→∞ (const)

∫
d x̄ e−βŪ (x̄), (10)

where introduced the centroid effective potential

Ueff(x) =− 1

β
ln

[
dx δ

(
x̄ − 1

n

n∑
j=1

x j

)
e−βUeff(x)

]
(11)

Note that the centroid effective potential is simply the free energy surface for the quantum

Boltzmann distribution associated with the centroid collective variable. In this sense, we have

“coarse-grained" the original ring-polymer distribution with respect to everything except the

centroid coordinate.
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Now, introduce a momentum variable for the centroid coordinate (which has no effect on

the path-integral Boltzmann distribution), we have

Q = lim
n→∞ (const)

∫
d x̄

∫
d p̄ e−βH̄(p̄,x̄), (12)

where we have also introduced the centroid Hamiltonian

H̄(p̄, x̄) = p̄2

2m
+Ū (x̄). (13)

This exact form of the quantum Boltzmann distribution could hardly look more classical! Fi-

nally, considering the classical equations of motion associated with the centroid Hamiltonian

˙̄x = ∂H̄

∂p̄
and ˙̄p =−∂H̄

∂x̄
, (14)

we arrive at the centroid molecular dynamics (CMD) approximation for the Kubo-transformed

quantum TCF

C̃AB(t ) ≈ (const)

Q

∫
d x̄0

∫
d p̄0 e−βH̄(p̄0,x̄0) A(x̄0)B(x̄t ). (15)

Like RPMD, the CMD approximation provides a purely classical description of the real-time

quantum dynamics that rigorously preserves the quantum Boltzmann statistics while neglecting

real-time coherence. Although there are technical advantages/disadvantages of one method

versus the other, they are very closely related and should be expected to succeed and fail

in similar regimes. Specifically, they should be expected to succeed for quantum mechanical

problems that are dominated by statistical quantum effects (such as zero-point energy or static

tunneling) and they should be expected to fail in systems (such as a double-slit experiment)

where real-time quantum coherence plays an important role.

For additional reading about RPMD and CMD, the following reviews provide a good starting

point:

• “Ring polymer molecular dynamics: Quantum effects in chemical dynamics from clas-

sical trajectories in an extended phase space" S. Habershon, D. E. Manolopoulos, T. E.

Markland, and T. F. Miller III, Annu. Rev. Phys. Chem., 64, 387 (2013).

• “Path-integral centroid methods in quantum statistical mechanics and dynamics." G. A.

Voth. Adv. Chem. Phys., 93,135 (1996).


