When light interacts with matter, it can be absorbed to create higher energy (excited) quantum states. These excited states are well-studied for isolated atoms and molecules. But when the light interacts with a collection of absorbing units (for example molecular assemblies, inorganic semiconductor nanocrystals, or a group of biological pigments embedded in a protein) the excited state is an exciton, a collective excitation with new properties that are qualitatively different from those of isolated absorbers. These novel properties include the ability to transport energy over large distances, as well as undergo fission/fusion processes that repackage energy.
There is a new urgency to achieve a quantitative understanding of the structure and dynamics of excitons because they play a key role in vital photonic processes, like solar energy conversion, lasing, and biological light harvesting. However, the fact that the exciton was introduced as a loosely defined virtual particle, often lacking a clear microscopic basis, has hindered the derivation of an unambiguous theoretical description. Furthermore, the large number of atoms involved in systems that exhibit excitonic behavior, like semiconductor quantum dots and light-harvesting membranes, makes first principles ab initio quantum calculations prohibitively expensive. Workers in the field often refer to any excited state in a solid as an "exciton", making it challenging to compare different experimental results and material properties. For example, physicists usually describe excitons in terms of the Wannier framework of a bound electron-hole pair, while chemists and biologists typically rely on the Frenkel model of interacting multilevel systems.
The goal of this workshop is to focus attention on three key issues that we think can define the field and determine future directions.
1) How big is an exciton? Its spatial extent should determine its most convenient representation in momentum versus real space.
2) How does an exciton move? Excitons can move through both coherent and diffusive motion.
3) What are potential applications of excitons? There may be advantages to energy versus charge manipulation in optoelectronic devices and information processing.
We believe the development of new experimental tools that can capture both spatial and time domain information simultaneously, combined with advances in theory and computation, now make it possible to address these issues in a comprehensive way.
The workshop will invite both theoretical and experimental researchers from diverse fields (physics, chemistry, biology, engineering) whose research centers on gaining better information on the spatio-temporal dynamics of excitons and their novel applications. The workshop is intended to be truly interdisciplinary. While facilitating discussion among different groups, there will be effort to develop common language and concepts that can unify different practitioners. Both fundamental issues entailing quantum mechanical characterization of excitons and practical applications of excitons will be promoted. The workshop also envisions development of a predictive, quantitative understanding of excitons in complex systems that can lead to a unified picture of the light-matter interaction as well as new applications for energy generation, imaging, and information processing.
We wish to ensure an intimate workshop setting, with no more than 20 to 25 participants. If you are interested in attending, but have not received an invitation, please contact the workshop organizer before registering.
Telluride Science is about expanding the frontiers of science, exploring new ideas, and building collaborations. The workshop schedule will allow for substantial unstructured time for participants to talk and think. All participants are expected to stay for the entire duration of the workshop.
With a workshop organizer's approval, students/post docs/lab members/retired senior scientists can register for $50 if they are not participating as a presenter. Please register at the normal rate and send an email to Sara Friedberg (sara@telluridescience.org) to let her know that you would like to participate at that rate. When you email her, please include the name of the workshop and the name of the workshop organizer who approved that participation rate. Thank you!
The Telluride Intermediate School
721 W Colorado Ave
Telluride, CO 81435
Workshop Price: $ 499.00
Early Bird Lodging Discount Available Until: 01/31/2024
A $100.00 discount is applied to your lodging cost when you register before 01/31/2024.
Cancellation Policy: Once a credit card has been charged, cancelled registrations will be subject to a cancellation fee. Registration fees will be automatically processed once registration is complete. A $25 cancellation fee will be retained from a registration refund. Lodging fee payments will be processed 60 days prior to arrival, and a $100 cancellation fee will apply if cancellations occur after a lodging fee payment is completed. Telluride Science can only guarantee a refund for the remaining lodging fees if requested prior to the cancellation deadline that is specific to each lodging provider. Telluride Science recommends that participants purchase travel insurance to protect against unforeseen, last-minute travel plan changes.Participant | Organization | ||||
Barford, William | University of Oxford | ||||
Bragg, Arthur | Johns Hopkins University | ||||
Burghardt, Irene | Goethe University Frankfurt | ||||
Caram, Justin | University of California, Los Angeles | ||||
Chakraborty, Arindam | Syracuse University | ||||
Chuang, Chern | University of Nevada, Las Vegas | ||||
Cina, Jeffrey | University of Oregon | ||||
Cruz, Chad | National Institute of Standards and Technology | ||||
Eaves, Joel | University of Colorado | ||||
Ginsberg, Naomi | University of California, Berkeley | ||||
Herbert, John | Ohio State University | ||||
Hildner, Richard | University of Groningen | ||||
Huang, Libai | Purdue University | ||||
Jang, Seogjoo | City University of New York - Queens College | ||||
Jonas, David | University of Colorado | ||||
Kilin, Dmitri | North Dakota State University | ||||
Kilina, Svetlana | North Dakota State University | ||||
Li, Hao | University of Houston | ||||
Miwa, Kuniyuki | Institute for Molecular Science | ||||
Montoya-Castillo, Andres | University of Colorado, Boulder | ||||
Raccah, Doran | University of Texas at Austin | ||||
Roberts, Sean | The University of Texas at Austin | ||||
Schlau-Cohen, Gabriela | Massachusetts Institute of Technology | ||||
Son, Dong Hee | Texas A&M University | ||||
Sternbach, Aaron | University of Maryland, College Park | ||||
Tempelaar, Roel | Northwestern University | ||||
Tretiak, Sergei | Los Alamos National Laboratory | ||||
Ullrich, Carsten | University of Missouri | ||||
Wasielewski, Michael | Northwestern University | ||||
Wong, Cathy | Univ. of Oregon | ||||
Yuen-Zhou, Joel | UC San Diego | ||||