Workshop Details
Ions in Aqueous Solutions and Molecular Biology: Theory, simulation, modelling
07/12/2010 - 07/16/2010
Meeting Description:

Thi workshop is aimed at recent developments in the theory and modeling of ions in solutions of biological interest. The focus will be on fundamental studies of the structure and thermodynamics of realistic models, including molecules and ions in water. These solutions are important in a wide range of biophysical problems, including specific
ion effects in biology, ion channels, membranes, protein folding, and in multi-scale modeling beginning from a chemical level and building to the level of functional biomolecular structures.

Ionic interactions with the surrounding medium are exceptionally strong at short range, often competing with classic chemical bonding. Ionic interactions with the surrounding medium and with other ions are also
exceptionally long-ranged. So systems in which ions play an essential role are outstanding candidates for multi-scale modeling and theories that permit controlled and understood coarse-graining. Though standard
methods are not available, there is much current interest in
breaking through these important challenges.

Recent years have seen a rapid growth in new theoretical approaches for molecular liquids. These developments have included quasi-chemical theory and other free-energy approaches. Quasi-chemical theory partitions the solvation free energy into inner-shell and outer-shell (packing and long-ranged) components by inserting a hard-sphere
condition. Analysis of the various free energy components can yield significant insights into the mechanism of solvation. The study of occupancy statistics in the inner-shell region produces helpful information on ion selectivity. Other new free energy methods have been
developed for larger molecular solutes, and for interactions of those solutes with bio-molecules.

One general theme will be the development of new, accurate methods for examining the local solvation structure and thermodynamics of hydration. Recent work has shown that a subject as basic as the solvation
environment of simple ions is far from resolved. Thus methods which incorporate quantum mechanical sampling coupled with free energy computations will be emphasized. The development of classical polarizable force fields which can accurately represent the local solute environment will also be discussed. A major aim will be relating the
models and theories to experimental results.

Another general theme will be working toward organized inclusion of multi-ion interactions/correlations. The MacMillan-Mayer solution theory is the standard conceptual organization of this problem, but it is scarcely operational as a practical matter. Whether recent advances associated
with quasi-chemical theory might change that status is a question worth intensive examination.

The workshop will include experts in fundamental studies of molecular and ionic hydration, and individuals developing new theories and computational methods for free energy calculations.

Meeting Venue:

Telluride Intermediate School
725 E. Colorado Avenue Telluride CO 81435

Ions in Aqueous Solutions and Molecular Biology: Theory, simulation, modelling Registered Meeting Participants:
Participant Organization
Asthagiri, Dilip Johns Hopkins University
Beck, Thomas U Cincinnati
Ben-Amotz, Dor Purdue University
Berkowitz, Max UNC
Coalson, Rob Dept. of Chemistry
Collins, Kim Medical Biotechnology Center, Room N340
Cremer, Paul Texas A&M University
Dang, Liem Pacific Northwest National Laboratory
Dixit, Purushottam Johns Hopkins University
Doren, Doug University of Delaware
Garde, Shekhar Rensselaer Polytechnic Institute
Jiao, Dian Sandia National Laboratories
Leung, Kevin Surface & Interface Sciences
Parsons, Drew Australian National University
Patel, Sandeep Univ. Delaware
Paulaitis, Michael Ohio State University
Pratt, Lawrence R. Tulane University
Rick, Steve University of New Orleans
Rogers, David Sandia National Laboratories
Tobias, Douglas Department of Chemistry
Weeks, John University of Maryland
Wick, Collin Louisiana Tech University
Wood, Robert U. of Delaware

Back to Top