This workshop focuses on the complexity of dynamics and kinetics in systems from single molecules to cells. Our aim is to bring several key
concepts -- such as energy landscapes, state space and conformational networks, probability inverse methods, polymer theory, statistical physics and beyond -- to deepen and integrate fundamental concepts relevant from the level of single molecules to cells.
For instance, current biophysical imaging and spectroscopy methods can probe time (< 10^−6 s), length (10^−9 m) and force (10^−12 N) scales
relevant to the life cycle of a cell. Despite the wealth of experimental data, our ability to gain meaningful insight from processes occurring at such small scales is limited by fundamental challenges common to all complex dynamical systems: current experimental and theoretical methods cannot capture complex processes in their full multi-dimensional detail.
At best, they provide a small slit through the curtains of the intricate cellular theatre on display by probing complex processes along just one
or a few relevant observable coordinates. Our focus will therefore be on building principled models for complex biological and physical systems directly inspired from experiments and computer simulations as well as generalizing theoretical frameworks relevant to complex biophysical
phenomena.
We will bring together experimentalists and theorists from diverse fields to motivate discussions along the following broad topics:
1. What experimental spectroscopy or imaging techniques under current or future development would provide a broader, more complete and multi-
dimensional, description of biophysical kinetics?
2. What is a convenient mathematical language for complex kinetics that would help understand, rather than fit, specific in silico, spectroscopy
and imaging experiments? How do we maximize the predictive power of such models in a principled fashion while reducing their dependency on
adjustable parameters? Related subjects include, for example, memory effects, multiple pathways on energy landscapes, networks and their relations to information processing of molecules, equilibrium and nonequilibrium properties.
3. How can we take full advantage of entire data sets from experiments or simulations in building models such as complex networks or generalized Langevin dynamics in steady-state and nonsteady-state environments?
4. Very broadly: When is a model too complicated in biophysics? When is a model too simple? Do the types of experiments from which we gather
data set fixed bounds on what we can or cannot ask?
This workshop is aimed at having an interdisciplinary meeting that brings together researchers in different fields to explore the new,
exciting, open questions, by stirring different disciplines. The time slot for each speaker is about one hour including 20-30 minutes interactive discussions with the audience. The program through a week is usually not fully occupied and allows the participants to exchange ideas in more detail and think about possible future projects/subjects during
the meeting.
http://mlns.es.hokudai.ac.jp/seminar/Telluride2015/index.html
Workshop attendees (invited speakers and participants) are expected to contribute for registration and housing during the five-days workshop, and to cover their travel expenses: see, e.g., this year's registration
https://www.telluridescience.org/for-scientists/for-participants/register/
We are eagerly looking forward to your participation and sincerely hope that you will accept this invitation. It would be very helpful if you could indicate whether you are likely to attend or not by July 31, 2014. In particular, if you know that you will not attend, please inform us as soon as possible so that we can invite new participants!
If you are interested in attending a meeting, but have not received an invitation, please contact the workshop organizer about availability before registering. Most TSRC meetings are very small, typically only about 25 people.
Registration fee includes two lunches and a banquet dinner at Rustico
Telluride Elementary School
477 West Columbia Ave
Telluride CO 81435
Participant | Organization | ||||
Berry, R. Stephen | The University of Chicago | ||||
Cao, Jianshu | Jianshu Cao | ||||
Clementi, Cecilia | Rice University | ||||
Das, Jayajit | The Research Institute at the Nationwide Childrens | ||||
Ghosh, Kingshuk | University of Denver | ||||
Green, Jason | University of Massachusetts | ||||
Hernandez, Rigoberto | Georgia Tech | ||||
Iyer-Biswas, Srividya | James Franck Inst, U Chicago | ||||
Komatsuzaki, Tamiki | Hokkaido University | ||||
Landes, Christy | Rice University | ||||
Li, Chun Biu | Hokkaido University | ||||
, Martin | Uppsala University | ||||
MAKAROV, DMITRII E | UT Austin | ||||
Noe, Frank | FU Berlin | ||||
Prasad, Ashok | Colorado State University | ||||
Presse, Steve | IUPUI | ||||
Scherer, Norbert | University of Chicago | ||||
Sivasankar, Sanjeevi | Iowa State University | ||||
Taylor, James | Hokkaido University | ||||
Tsekouras, Konstantinos | IUPUI | ||||